Mass Spectrometry

Mass spectrometry is used to determine the mass, and thus identity, of a sample molecule. Ionized molecules passing it through a strong magnetic field will have their trajectories deflected by an amount proportional to their mass to charge ratio (m/z). This m/z spectrum can then be... Show more »

Mass spectrometry is used to determine the mass, and thus identity, of a sample molecule. Ionized molecules passing it through a strong magnetic field will have their trajectories deflected by an amount proportional to their mass to charge ratio (m/z). This m/z spectrum can then be used to identify the molecule by comparison to a vast database of known molecular m/z spectra.
To accomplish this, a mass spectrometry experiment is broken down into three basic steps. First, the sample is ionized. (If the sample is already a gas, it can be directly ionized; if it is a liquid or solid it must first be vaporized before ionization.) The ions are next organized into a stream that is guided through the mass analyzer, where they are exposed to magnetic fields that deflect their trajectory based on their mass. This deflection is recorded by the mass detector.
There are many varied ways to ionize your sample. The process of ionizing a molecule can also break that molecule into fragments, in many cases in predictable patterns based on bond strengths and various functional groups that can yield structural information about the sample molecule. Hard ionization methods tend to produce lots of fragmentation, while soft ionization methods result in much less fragmentation. Thus, the m/z spectra will reflect the masses of the ionized sample analyte as well as ionized fragments of that analyte, resulting in a unique “fingerprint” for that molecule.
There are also multiple methods for perturbing the ions’ flight and detecting the ions. Combining different methods of ionization, deflection and detection make mass spectrometry a versatile technique with relevance across a broad range of scientific areas. (Credit: Fraser Tan) « Show less

We found 2 labs offering this service

Price on request
4ickjg7q9ih7y6cld4ju georgetown

Metabolomics Shared Resource

Washington DC
No Reviews Available

The SYNAPT G2-Si High Definition Mass Spectrometer provides the most complete characterization of complex mixtures and molecules with unique levels of MS performance, industry leading informatics and unparalleled platform versatility. With high-efficiency T-Wave ion mobility, this can be employed for an additional dimension of separation, based on molecular size and shape.

Price on request
Lmxumco4t7cljsywpq1g next

NEXT Molecular Analytics

Chester Virginia
No Reviews Available