Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Strain engineering by genome mass transfer: efficient chromosomal trait transfer method utilizing donor genomic DNA and recipient recombineering hosts.

    Mol Biotechnol. 43(1):41-51. doi: 10.1007/s12033-009-9177-5. September 2009. View on PubMed.
  • Authors

    Williams JA, Luke J, and Hodgson C
  • Abstract

    Strain engineering, like cloning, is a fundamental technology used to confer new traits onto existing strains. While effective methods for trait development through gene modification within strains have been developed, methods for trait transfer between Escherichia coli strains to create complex strains are needed. We report herein the development of genome mass transfer (GMT), a broadly applicable new strain engineering methodology enabling rapid trait transfer from a donor strain into a recombineering gene-expressing recipient strain. GMT utilizes electroporation of donor chromosomal DNA into a recombineering recipient cell for precise trait transfer. GMT transfer of traits between E. coli strains can be used to rapidly assemble new strains incorporating combinations of marked gene knockouts, for example, utilizing the existing E. coli K-12 Keio gene knockout collection as source target genes. Optional use of random primed isothermal amplified DNA eliminates the need for initial DNA purification, affording high throughput application. This allows unprecedented simplicity and speed for rational design engineering of complex phenotypes in industrial strains.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.