Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Parental alleles of an imprinted mouse transgene replicate synchronously.

    Dev Genet. 23(4):275-84. doi: 10.1002/(SICI)1520-6408(1998)23:4<275::AID-DVG3>3.0.CO;2-#. 1998. View on PubMed.
  • Authors

    Shuster M, Dhar MS, Olins AL, Olins DE, Howell CY, Gollin SM, and Chaillet JR
  • Abstract

    Molecular features of imprinted genes include differences in expression, methylation, and the timing of DNA replication between parental alleles. Whereas methylation differences always seem to be associated with differences in expression, differences in the timing of replication between parental homologs are not always seen at imprinted loci. These observations raise the possibility that differences in replication timing may not be an essential feature underlying genomic imprinting. In this study, we examined the timing of replication of the two alleles of the imprinted RSVIgmyc transgene in individual embryonic cells using fluorescence in situ hybridization (FISH). The cis-acting signals for RSVIgmyc imprinting are within RSVIgmyc itself. Thus, allele-specific differences in replication, if they indeed govern RSVIgmyc imprinting, should be found in RSVIgmyc sequences. We found that the parental alleles of RSVIgmyc, which exhibit differences in methylation, replicated at the same time. Synchronous replication was also seen in embryonic cells containing a modified version of RSVIgmyc that exhibited parental allele differences in both methylation and expression. These findings indicate that maintenance of expression and methylation differences between alleles does not require a difference in replication timing. The differences in replication timing of endogenous imprinted alleles detected by FISH might therefore reflect structural differences between the two alleles that could be a consequence of imprinting or, alternatively, could be unrelated to imprinting.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.