Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Overexpression of Cdc20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer.

    Carcinogenesis. 28(1):81-92. doi: 10.1093/carcin/bgl100. January 2007. View on PubMed.
  • Authors

    Mondal G, Sengupta S, Panda CK, Gollin SM, Saunders WS, and Roychoudhury S
  • Abstract

    Defects in the spindle assembly checkpoint are thought to be responsible for an increased rate of aneuploidization during tumorigenesis. Despite a plethora of information on the correlation between BUB-MAD gene expression levels and defects in the spindle checkpoint, very little is known about alteration of another important spindle checkpoint protein, Cdc20, in human cancer and its role in tumor aneuploidy. We observed overexpression of CDC20 in several oral squamous cell carcinoma (OSCC) cell lines and primary head and neck tumors and provide evidence that such overexpression of CDC20 is associated with premature anaphase promotion, resulting in mitotic abnormalities in OSCC cell lines. We also reconstituted the chromosomal instability phenotype in a chromosomally stable OSCC cell line by overexpressing CDC20. Thus, abnormalities in the cellular level of Cdc20 may deregulate the timing of anaphase promoting complex (APC/C) in promoting premature anaphase, which often results in aneuploidy in the tumor cells.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.