Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • The high-affinity nAChR partial agonists varenicline and sazetidine-A exhibit reinforcing properties in rats.

    Prog Neuropsychopharmacol Biol Psychiatry. 34(8):1455-64. doi: 10.1016/j.pnpbp.2010.07.037. December 1, 2010. View on PubMed.
  • Authors

    Paterson NE, Min W, Hackett A, Lowe D, Hanania T, Caldarone B, and Ghavami A
  • Abstract

    Varenicline (Chantix®, Champix®) is a nicotinic acetylcholine receptor (nAChR) partial agonist clinically approved for smoking cessation, yet its potential abuse liability properties have not been fully characterized. The nAChR ligand sazetidine-A has been reported as a selective full or partial agonist at α4β2* nAChR subtypes in in vitro studies. In the present studies, varenicline, sazetidine-A and nicotine exhibited inverted U-shaped dose-response functions under fixed-ratio (peak responding at 30, 60 and 10-30 μg/kg/inf, respectively) or progressive-ratio (peak responding at 30-60, 30-100 and 30 μg/kg/inf, respectively) schedules in rats trained to self-administer nicotine. Varenicline (ED(50) 0.2 mg/kg) and sazetidine-A (ED(50) 0.44 mg/kg) fully substituted for nicotine (ED(50) 0.09 mg/kg) in rats trained to discriminate nicotine (0.4 mg/kg, i.p.) from saline. The reinforcing and discriminative stimulus (DS) properties of sazetidine-A, varenicline and nicotine were attenuated by acute pretreatment with the non-selective neuronal non-competitive nAChR antagonist mecamylamine or the α4* nAChR-selective antagonist dihydro-β-erythroidine, but not by the α7 nAChR subtype antagonist methyllycaconitine. Drug-naïve rats acquired stable self-administration of varenicline (30 μg/kg/inf), and sazetidine-A (60 μg/kg/inf), at doses that supported peak responding under a fixed-ratio 3 schedule in nicotine-trained rats. Nonetheless, self-administration and re-acquisition of varenicline and sazetidine-A were less robust than nicotine. Thus, partial activation of α4β2* nAChRs by varenicline or sazetidine-A is sufficient to mimic the DS and reinforcing properties of nicotine in nicotine-experienced rats, although the reinforcing properties of partial agonists are diminished in nicotine-naïve rats. Future studies should assess nicotine withdrawal measures in animals chronically exposed to varenicline or sazetidine-A.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.