Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Regulator of G protein signaling 4 [corrected] is a crucial modulator of antidepressant drug action in depression and neuropathic pain models.

    Proc Natl Acad Sci U S A. 110(20):8254-9. doi: 10.1073/pnas.1214696110. May 14, 2013. View on PubMed.
  • Authors

    Stratinaki M, Varidaki A, Mitsi V, Ghose S, Magida J, Dias C, Russo SJ, Vialou V, Caldarone BJ, Tamminga CA, Nestler EJ, and Zachariou V
  • Abstract

    Regulator of G protein signaling 4 (Rgs4) is a signal transduction protein that controls the function of monoamine, opiate, muscarinic, and other G protein-coupled receptors via interactions with Gα subunits. Rgs4 is expressed in several brain regions involved in mood, movement, cognition, and addiction and is regulated by psychotropic drugs, stress, and corticosteroids. In this study, we use genetic mouse models and viral-mediated gene transfer to examine the role of Rgs4 in the actions of antidepressant medications. We first analyzed human postmortem brain tissue and found robust up-regulation of RGS4 expression in the nucleus accumbens (NAc) of subjects receiving standard antidepressant medications that target monoamine systems. Behavioral studies of mice lacking Rgs4, including specific knockdowns in NAc, demonstrate that Rgs4 in this brain region acts as a positive modulator of the antidepressant-like and antiallodynic-like actions of several monoamine-directed antidepressant drugs, including tricyclic antidepressants, selective serotonin reuptake inhibitors, and norepinephrine reuptake inhibitors. Studies using viral-mediated increases in Rgs4 activity in NAc further support this hypothesis. Interestingly, in prefrontal cortex, Rgs4 acts as a negative modulator of the actions of nonmonoamine-directed drugs that are purported to act as antidepressants the N-methyl-D-aspartate glutamate receptor antagonist ketamine and the delta opioid agonist (+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide. Together, these data reveal a unique modulatory role of Rgs4 in the brain region-specific actions of a wide range of antidepressant drugs and indicate that pharmacological interventions at the level of RGS4 activity may enhance the actions of such drugs used for the treatment of depression and neuropathic pain.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.