Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Noncanonical translation initiation of the Arabidopsis flowering time and alternative polyadenylation regulator FCA.

    Plant Cell. 22(11):3764-77. doi: 10.1105/tpc.110.077990. November 2010. View on PubMed.
  • Authors

    Simpson GG, Laurie RE, Dijkwel PP, Quesada V, Stockwell PA, Dean C, and Macknight RC
  • Abstract

    The RNA binding protein FCA regulates the floral transition and is required for silencing RNAs corresponding to specific noncoding sequences in the Arabidopsis thaliana genome. Through interaction with the canonical RNA 3' processing machinery, FCA affects alternative polyadenylation of many transcripts, including antisense RNAs at the locus encoding the floral repressor FLC. This potential for widespread alteration of gene regulation clearly needs to be tightly regulated, and we have previously shown that FCA expression is autoregulated through poly(A) site choice. Here, we show distinct layers of FCA regulation that involve sequences within the 5' region that regulate noncanonical translation initiation and alter the expression profile. FCA translation in vivo occurs exclusively at a noncanonical CUG codon upstream of the first in-frame AUG. We fully define the upstream flanking sequences essential for its selection, revealing features that distinguish this from other non-AUG start site mechanisms. Bioinformatic analysis identified 10 additional Arabidopsis genes that likely initiate translation at a CUG codon. Our findings reveal further unexpected complexity in the regulation of FCA expression with implications for its roles in regulating flowering time and gene expression and more generally show plant mRNA exceptions to AUG translation initiation.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.