Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Developmental molecular and functional cerebellar alterations induced by PCP4/PEP19 overexpression: implications for Down syndrome.

    Neurobiol Dis. 63:92-106. doi: 10.1016/j.nbd.2013.11.016. March 2014. View on PubMed.
  • Authors

    Mouton-Liger F, Sahún I, Collin T, Lopes Pereira P, Masini D, Thomas S, Paly E, Luilier S, Même S, Jouhault Q, Bennaï S, Beloeil JC, Bizot JC, Hérault Y, Dierssen M, and Créau N
  • Abstract

    PCP4/PEP19 is a modulator of Ca(2+)-CaM signaling. In the brain, it is expressed in a very specific pattern in postmitotic neurons. In particular, Pcp4 is highly expressed in the Purkinje cell, the sole output neuron of the cerebellum. PCP4, located on human chromosome 21, is present in three copies in individuals with Down syndrome (DS). In a previous study using a transgenic mouse model (TgPCP4) to evaluate the consequences of 3 copies of this gene, we found that PCP4 overexpression induces precocious neuronal differentiation during mouse embryogenesis. Here, we report combined analyses of the cerebellum at postnatal stages (P14 and adult) in which we identified age-related molecular, electrophysiological, and behavioral alterations in the TgPCP4 mouse. While Pcp4 overexpression at P14 induces an earlier neuronal maturation, at adult stage it induces increase in cerebellar CaMK2alpha and in cerebellar LTD, as well as learning impairments. We therefore propose that PCP4 contributes significantly to the development of Down syndrome phenotypes through molecular and functional changes.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.