Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Rapid chemical digestion of small acid-soluble spore proteins for analysis of Bacillus spores.

    Anal Chem. 78(1):181-8. doi: 10.1021/ac051521d. January 1, 2006. View on PubMed.
  • Authors

    Swatkoski S, Russell SC, Edwards N, and Fenselau C
  • Abstract

    A method for the rapid identification of Bacillus spores is proposed, based on the selective release and chemical digestion of small, acid-soluble spore proteins (SASPs). Microwave-assisted acid hydrolysis of SASPs from B. anthracis str. Sterne and B. subtilis str. 168 was accomplished in a single step requiring only 90 s of heating. The peptide products of the chemical digestion were identified by postsource decay sequencing with a MALDI-TOF-MS equipped with a curved-field reflectron. The specificity of the observed SASP peptides was evaluated using a cross-species sequence search. The incomplete nature of the acid digestion under these conditions allowed detection of the digest products along with the proteins from which they originated, which increased species identification confidence. The feasibility of this approach for the rapid identification of Bacillus species was further demonstrated by analyzing a mixture of B. subtilis str. 168 and B. anthracis str. Sterne spores.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.