Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Hierarchical modeling for synthetic biology.

    ACS Synth Biol. 1(8):353-64. doi: 10.1021/sb300033q. August 17, 2012. View on PubMed.
  • Authors

    Chandran D and Sauro HM
  • Abstract

    One of the characteristics of synthetic biology is that it often combines mathematical modeling with experimental work. The link between modeling and experiments is carried out by human researchers who have a conceptual understanding of the underlying biological system. At present, there is no method for representing a conceptual description that can be used to connect mathematical models and experimental data, especially sequence annotations, pertaining to the same underlying biological system. One reason for this limitation is that there can exist different mathematical models of the same biological system. In such cases, the same annotation in a DNA sequence would map differently to different models of the same system. In order to enable software support for synthetic biology, a software framework is needed such that it is able to capture a conceptual description of a biological system, including quantitative values, without confining itself to one mathematical model. The novel use of hierarchical modeling inside TinkerCell (www.tinkercell.com) provides one potential software solution for representing a "conceptual diagram" of a biological system. The conceptual diagram does not assume any underlying model. Rather, the diagram is mapped automatically to one of several models. The diagram can then contain information relevant for both modeling and experimental work. Computer-aided design (CAD) can be very useful to synthetic biology. CAD allows engineers to spend more effort at the design stage and less at the construction stage by automatically performing many tasks that are currently performed by human researchers. The ability to automatically link models and experimental results will be one step in the development of practical CAD systems for synthetic biology.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.