Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • In vivo whole-cell patch-clamp recording of sensory synaptic responses of cingulate pyramidal neurons to noxious mechanical stimuli in adult mice.

    Mol Pain. 6:62. doi: 10.1186/1744-8069-6-62. September 28, 2010. View on PubMed.
  • Authors

    Koga K, Li X, Chen T, Steenland HW, Descalzi G, and Zhuo M
  • Abstract

    The anterior cingulate cortex (ACC) plays important roles in emotion, learning, memory and persistent pain. Our previous in vitro studies have demonstrated that pyramidal neurons in layer II/III of the adult mouse ACC can be characterized into three types regular spiking (RS), intermediate (IM) and intrinsic bursting (IB) cells, according to their action potential (AP) firing patterns. However, no in vivo information is available for the intrinsic properties and sensory responses of ACC neurons of adult mice. Here, we performed in vivo whole-cell patch-clamp recordings from pyramidal neurons in adult mice ACC under urethane anesthetized conditions. First, we classified the intrinsic properties and analyzed their slow oscillations. The population ratios of RS, IM and IB cells were 10, 62 and 28%, respectively. The mean spontaneous APs frequency of IB cells was significantly greater than those of RS and IM cells, while the slow oscillations were similar among ACC neurons. Peripheral noxious pinch stimuli induced evoked spike responses in all three types of ACC neurons. Interestingly, IB cells showed significantly greater firing frequencies than RS and IM cells. In contrast, non-noxious brush did not induce any significant response. Our studies provide the first in vivo characterization of ACC neurons in adult mice, and demonstrate that ACC neurons are indeed nociceptive. These findings support the critical roles of ACC in nociception, from mice to humans.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.