Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins.

    J Immunol. 179(12):8216-24. December 15, 2007. View on PubMed.
  • Authors

    Bax M, García-Vallejo JJ, Jang-Lee J, North SJ, Gilmartin TJ, Hernández G, Crocker PR, Leffler H, Head SR, Haslam SM, Dell A, and van Kooyk Y
  • Abstract

    Dendritic cells (DC) are the most potent APC in the organism. Immature dendritic cells (iDC) reside in the tissue where they capture pathogens whereas mature dendritic cells (mDC) are able to activate T cells in the lymph node. This dramatic functional change is mediated by an important genetic reprogramming. Glycosylation is the most common form of posttranslational modification of proteins and has been implicated in multiple aspects of the immune response. To investigate the involvement of glycosylation in the changes that occur during DC maturation, we have studied the differences in the glycan profile of iDC and mDC as well as their glycosylation machinery. For information relating to glycan biosynthesis, gene expression profiles of human monocyte-derived iDC and mDC were compared using a gene microarray and quantitative real-time PCR. This gene expression profiling showed a profound maturation-induced up-regulation of the glycosyltransferases involved in the expression of LacNAc, core 1 and sialylated structures and a down-regulation of genes involved in the synthesis of core 2 O-glycans. Glycosylation changes during DC maturation were corroborated by mass spectrometric analysis of N- and O-glycans and by flow cytometry using plant lectins and glycan-specific Abs. Interestingly, the binding of the LacNAc-specific lectins galectin-3 and -8 increased during maturation and up-regulation of sialic acid expression by mDC correlated with an increased binding of siglec-1, -2, and -7.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.