Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • BARHL2 transcription factor regulates the ipsilateral/contralateral subtype divergence in postmitotic dI1 neurons of the developing spinal cord.

    Proc Natl Acad Sci U S A. 109(5):1566-71. doi: 10.1073/pnas.1112392109. January 31, 2012. View on PubMed.
  • Authors

    Ding Q, Joshi PS, Xie ZH, Xiang M, and Gan L
  • Abstract

    In the dorsal spinal cord, distinct interneuron classes relay specific somatosensory information, such as touch, heat, and pain, from the periphery to higher brain centers via ipsilateral and contralateral axonal pathways. The transcriptional mechanisms by which dorsal interneurons choose between ipsilateral and contralateral projection fates are unknown. Here, we show that a single transcription factor (TF), BARHL2, regulates this choice in proprioceptive dI1 interneurons by selectively suppressing cardinal dI1contra features in dI1ipsi neurons, despite expression by both subtypes. Strikingly, dI1ipsi neurons in Barhl2-null mice exhibit a dI1contra cell settling pattern in the medial deep dorsal horn, and, most importantly, they project axons contralaterally. These aberrations are preceded by ectopic dI1ipsi expression of the defining dI1contra TF, LHX2, and down-regulation of the dI1ipsi-enriched TF, BARHL1. Taken together, these results elucidate BARHL2 as a critical postmitotic regulator of dI1 subtype diversification, as well as its intermediate position in the dI1 genetic hierarchy.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.