Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Large-mutation spectra induced at hemizygous loci by low-LET radiation: evidence for intrachromosomal proximity effects.

    Radiat Res. 156(5 Pt 1):545-57. November 2001. View on PubMed.
  • Authors

    Costes S, Sachs R, Hlatky L, Vannais D, Waldren C, and Fouladi B
  • Abstract

    A mathematical model is used to analyze mutant spectra for large mutations induced by low-LET radiation. The model equations are based mainly on two-break misrejoining that leads to deletions or translocations. It is assumed, as a working hypothesis, that the initial damage induced by low-LET radiation is located randomly in the genome. Specifically, we analyzed data for two hemizygous loci CD59- mutants, mainly very large-scale deletions (>3 Mbp), in human-hamster hybrid cells, and data from the literature on those HPRT- mutants which involve at least deletion of the whole gene, and often of additional flanking markers (approximately 50-kbp to approximately 4.4-Mbp deletions). For five data sets, we estimated f, the probability that two given breaks on the same chromosome will misrejoin to make a deletion, as a function of the separation between the breaks. We found that f is larger for nearby breaks than for breaks that are more widely separated; i.e., there is a "proximity effect". For acute irradiation, the values of f determined from the data are consistent with the corresponding break misrejoining parameters found previously in quantitative modeling of chromosome aberrations. The value of f was somewhat smaller for protracted irradiation than for acute irradiation at a given total dose; i.e., the mutation data show a decrease that was smaller than expected for dose protraction by fractionation or low dose rate.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.