Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Pharmacological profiles in rats of novel antipsychotics with combined dopamine D2/serotonin 5-HT1A activity: comparison with typical and atypical conventional antipsychotics.

    Behav Pharmacol. 18(2):103-18. doi: 10.1097/FBP.0b013e3280ae6c96. March 2007. View on PubMed.
  • Authors

    Bardin L, Auclair A, Kleven MS, Prinssen EP, Koek W, Newman-Tancredi A, and Depoortère R
  • Abstract

    Combining antagonist/partial agonist activity at dopamine D2 and agonist activity at serotonin 5-HT1A receptors is one of the approaches that has recently been chosen to develop new generation antipsychotics, including bifeprunox, SSR181507 and SLV313. There have been, however, few comparative data on their pharmacological profiles. Here, we have directly compared a wide array of these novel dopamine D2/5-HT1A and conventional antipsychotics in rat models predictive of antipsychotic activity. Potency of antipsychotics to antagonize conditioned avoidance, methylphenidate-induced behaviour and D-amphetamine-induced hyperlocomotion correlated with their affinity at dopamine D2 receptors. Potency against ketamine-induced hyperlocomotion was independent of affinity at dopamine D2 or 5-HT1A receptors. Propensity to induce catalepsy, predictive of occurrence of extrapyramidal side effects, was inversely related to affinity at 5-HT1A receptors. As a result, preferential D2/5-HT1A antipsychotics displayed a large separation between doses producing 'antipsychotic-like' vs. cataleptogenic actions. These data support the contention that 5-HT1A receptor activation greatly reduces or prevents the cataleptogenic potential of novel antipsychotics. They also emphasize that interactions at 5-HT1A and D2 receptors, and the nature of effects (antagonism or partial agonism) at the latter has a profound influence on pharmacological activities, and is likely to affect therapeutic profiles.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.