Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Re-annotation of the physical map of Glycine max for polyploid-like regions by BAC end sequence driven whole genome shotgun read assembly.

    BMC Genomics. 9:323. doi: 10.1186/1471-2164-9-323. July 7, 2008. View on PubMed.
  • Authors

    Saini N, Shultz J, and Lightfoot DA
  • Abstract

    BACKGROUNDMany of the world's most important food crops have either polyploid genomes or homeologous regions derived from segmental shuffling following polyploid formation. The soybean (Glycine max) genome has been shown to be composed of approximately four thousand short interspersed homeologous regions with 1, 2 or 4 copies per haploid genome by RFLP analysis, microsatellite anchors to BACs and by contigs formed from BAC fingerprints. Despite these similar regions,, the genome has been sequenced by whole genome shotgun sequence (WGS). Here the aim was to use BAC end sequences (BES) derived from three minimum tile paths (MTP) to examine the extent and homogeneity of polyploid-like regions within contigs and the extent of correlation between the polyploid-like regions inferred from fingerprinting and the polyploid-like sequences inferred from WGS matches.RESULTSResults show that when sequence divergence was 1-10%, the copy number of homeologous regions could be identified from sequence variation in WGS reads overlapping BES. Homeolog sequence variants (HSVs) were single nucleotide polymorphisms (SNPs; 89%) and single nucleotide indels (SNIs 10%). Larger indels were rare but present (1%). Simulations that had predicted fingerprints of homeologous regions could be separated when divergence exceeded 2% were shown to be false. We show that a 5-10% sequence divergence is necessary to separate homeologs by fingerprinting. BES compared to WGS traces showed polyploid-like regions with less than 1% sequence divergence exist at 2.3% of the locations assayed.CONCLUSIONThe use of HSVs like SNPs and SNIs to characterize BACs wil improve contig building methods. The implications for bioinformatic and functional annotation of polyploid and paleopolyploid genomes show that a combined approach of BAC fingerprint based physical maps, WGS sequence and HSV-based partitioning of BAC clones from homeologous regions to separate contigs will allow reliable de-convolution and positioning of sequence scaffolds (see BES_scaffolds section of SoyGD). This approach will assist genome annotation for paleopolyploid and true polyploid genomes such as soybean and many important cereal and fruit crops.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.