Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Preferential dimethylation of histone H4 lysine 20 by Suv4-20.

    J Biol Chem. 283(18):12085-92. doi: 10.1074/jbc.M707974200. May 2, 2008. View on PubMed.
  • Authors

    Yang H, Pesavento JJ, Starnes TW, Cryderman DE, Wallrath LL, Kelleher NL, and Mizzen CA
  • Abstract

    Post-translational modifications of histone tails direct nuclear processes including transcription, DNA repair, and chromatin packaging. Lysine 20 of histone H4 is mono-, di-, or trimethylated in vivo, but the regulation and significance of these methylations is poorly understood. The SET domain proteins PR-Set7 and Suv4-20 have been implicated in mono- and trimethylation, respectively; however, enzymes that dimethylate lysine 20 have not been identified. Here we report that Drosophila Suv4-20 is a mixed product specificity methyltransferase that dimethylates approximately 90% and trimethylates less than 5% of total H4 at lysine 20 in S2 cells. Trimethylation, but not dimethylation, is reduced in Drosophila larvae lacking HP1, suggesting that an interaction with HP1 regulates the product specificity of Suv4-20 and enrichment of trimethyllysine 20 within heterochromatin. Similar to the Drosophila enzyme, human Suv4-20h1/h2 enzymes generate di- and trimethyllysine 20. PR-Set7 and Suv4-20 are both required for normal levels of methylation, suggesting they have non-redundant functions. Alterations in the level of lysine 20 methylation following knock-down or overexpression of Suv4-20 did not affect lysine 16 acetylation, revealing that these two modifications are not competitive in vivo. Depletion of Suv4-20h1/h2 in HeLa cells impaired the formation of 53BP1 foci, suggesting dimethyllysine 20 is required for a proper DNA damage response. Collectively, the data indicate that Suv4-20 generates nearly ubiquitous dimethylation that facilitates the DNA damage response and selective trimethylation that is involved in heterochromatin formation.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.