Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Ca2+, autophagy and protein degradation: thrown off balance in neurodegenerative disease.

    Cell calcium. 47(2):112-21. February 1, 2010. View on PubMed.
  • Authors

    Jose Miguel Vicencio, Sergio Lavandero, and Gyorgy Szabadkai
  • Abstract

    Substantial progress has been made throughout the last decades in the elucidation of the key players and mechanisms responsible for Ca2+ signal generation in both excitable and non-excitable cells. Importantly, these studies led also to the recognition that a close correlation exists between the deregulation of cellular Ca2+ homeostasis and the development of several human pathologies, including neurodegenerative disease. Notwithstanding this advances, much less is certain about the targets and mechanisms by which compromised Ca2+ signaling exerts its effects on cell function and survival. Recently it has been proposed that deregulation of cellular energy metabolism and protein turnover (synthesis, folding and degradation) are also fundamental pathomechanisms of neurodegenerative disease, pointing to the pivotal role of autophagy, a major cellular pathway controlling metabolic homeostasis. Indeed, activation of autophagy has been shown to represent a highly successful strategy to restore normal neuronal function in a variety of models of neurodegenerative disease. Here we review recent advances in elucidating Ca2+ regulation of autophagy and will highlight its relationship to neurodegeneration.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.