Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Recycled vertical flow constructed wetland (RVFCW)--a novel method of recycling greywater for irrigation in small communities and households.

    Chemosphere. 66(5):916-23. doi: 10.1016/j.chemosphere.2006.06.006. July 17, 2006. View on PubMed.
  • Authors

    Zeev Ronen (Department of Environmental Hydrology and Microbiology), Gross A, Shmueli O, and Raveh E
  • Abstract

    The use of greywater for irrigation is becoming increasingly common. However, raw greywater is often contaminated and can cause environmental harm and pose health risks. Nevertheless, it is often used without any significant pretreatment, a practice mistakenly considered safe. The aim of this study was to develop an economically sound, low-tech and easily maintainable treatment system that would allow safe and sustainable use of greywater for landscape irrigation in small communities and households. The system is based on a combination of vertical flow constructed wetland with water recycling and trickling filter, and is termed recycled vertical flow constructed wetland (RVFCW). The RVFCW's properties, removal efficiency, hydraulic parameters and feasibility were studied, as well as the environmental effects of the treated greywater, as reflected by soil and plant parameters over time. The RVFCW was efficient at removing virtually all of the suspended solids and biological oxygen demand, and about 80% of the chemical oxygen demand after 8h. Fecal coliforms dropped by three to four orders of magnitude from their initial concentration after 8h, but this was not always enough to meet current regulations for unlimited irrigation. The treated greywater had no significant negative impact on plants or soil during the study period. The feasibility analysis indicated a return over investment after approximately three years. We concluded that the RVFCW is a sustainable and promising treatment system for greywater use that can be run and maintained by unskilled operators.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.