Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Expression analysis of a plum pathogenesis related 10 (PR10) protein during brown rot infection.

    Plant Cell Rep. 28(1):95-102. doi: 10.1007/s00299-008-0612-z. January 2009. View on PubMed.
  • Authors

    El-kereamy A, Jayasankar S, Taheri A, Errampalli D, and Paliyath G
  • Abstract

    Plant PR10 is one of the pathogenesis related proteins, induced upon exposure to different stress conditions including fungal infection. PR10 proteins have been implicated in fungal disease resistance in some species; however its transcriptional regulation is not well understood. In the present work we cloned a PR10 gene from European plums (Prunus domestica L.) and monitored the quantitative changes in its transcript levels as a result of fungal infection in two varieties. We also studied the possible involvement of the membrane degrading enzyme phospholipase D-alpha (PLDalpha). In the susceptible variety, 'Veeblue', infection with the brown rot fungus Monilinia fructicola induced PLDalpha and PR10 expression, while in the resistant variety, 'Violette', a constitutive expression of PLDalpha and PR10 transcripts levels were observed. Resistance to M. fructicola also coincides with a sharp decrease in the expression of ABI1, a protein phosphatase and elevated hydrogen peroxide content after infection. Further, inhibition of PLDalpha by hexanal treatment, up-regulated ABI1 and decreased PR10 expression, suggesting a possible relationship between the two. We further confirm these results in Arabidopsis abi1 mutant that shows a higher level of PR10 transcripts.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.