Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Intrinsic and extrinsic mechanisms of oocyte loss.

    Mol Hum Reprod. 16(12):916-27. doi: 10.1093/molehr/gaq066. December 2010. View on PubMed.
  • Authors

    Thomson TC, Fitzpatrick KE, and Johnson J
  • Abstract

    A great deal of evolutionary conservation has been found in the control of oocyte development, from invertebrates to women. However, little is known of mechanisms that control oocyte loss over time. Oocyte loss is often assumed to be a result of oocyte-intrinsic deficiencies or damage. In fruit flies, starvation results in halted oocyte production by germline stem cells and induces oocyte loss midway through development. When we fed wild-type flies the bacterial compound Rapamycin (RAP) to mimic starvation, production of new oocytes continued, but mid-stage loss sterilized the animals. Surprisingly, follicle cell invasion and phagocytosis of the oocyte preceded any signs of germ cell death. RAP-induced egg chamber loss was prevented when RAP receptor FKBP12 was knocked down specifically in follicle cells. Oogenesis continued past the mid-stages, and these mutants continued to lay embryos that could develop into normal adults. Hence, intact healthy oocytes can be destroyed by somatic cells responding to extrinsic stimuli. We termed this process inducible somatic oocyte destruction. RAP treatment of mouse follicles in vitro resulted in phagocytic uptake of the oocyte by granulosa cells as seen in flies. We hypothesize that extrinsic modes of oocyte loss occur in mammals.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.