Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Cross talk between estradiol and mTOR kinase in the regulation of ovarian granulosa proliferation.

    Reprod Sci. 19(2):143-51. doi: 10.1177/1933719111424447. February 2012. View on PubMed.
  • Authors

    Yu J, Thomson TC, and Johnson J
  • Abstract

    Treatment of ovarian granulosa cells and follicles with the mammalian target of rapamycin (mTOR) kinase inhibitor results in biphasic effects where nanomolar rapamycin (RAP) results in reduced proliferation, mitotic anomalies, and attenuated follicle growth, while the picomolar RAP results in accelerated follicle growth. Here, we tested whether such effects are specific to RAP or could be mimicked by 2 alternative mTOR inhibitors, everolimus (EV) and temsirolimus (TEM), and whether these effects were dependent on the presence of estradiol (E2). Spontaneously immortalized rat granulosa cells (SIGCs) were cultured in dose curves of RAP, EV, TEM, or vehicle with or without E2. Proliferation and phosphorylation of mTOR targets p70S6 kinase and 4E-binding protein (BP) were determined. Cell cycle gene array analysis and confirmatory quantitative reverse transcriptase polymerase chain reaction were performed upon cells treated with picomolar RAP versus controls. Nanomolar RAP, EV, and TEM reduced SIGC proliferation and decreased phospho-p70 and 4E-BP. Picomolar concentrations accelerated proliferation without affecting mTOR substrate phosphorylation. Acceleration of growth by picomolar inhibitor required E2. Picomolar drug treatment altered the transcription of cell cycle regulators, increasing Integrin beta 1 and calcineurin expression, and decreasing inhibin alpha, Chek1, p16ARF, p27/Kip1, and Sestrin2 expression. At nanomolar concentrations, mTOR inhibitors attenuated granulosa proliferation. Accelerated growth and alterations in cell cycle gene transcription found with picomolar concentrations required E2 within the intrafollicular concentration range. The low concentrations of inhibitors required to increase granulosa proliferation suggest a novel use to support the growth of ovarian follicles.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.