Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Structure and electronic properties of highly charged C60 and C58 fullerenes.

    J Chem Phys. 123(18):184306. doi: 10.1063/1.2104467. November 8, 2005. View on PubMed.
  • Authors

    Díaz-Tendero S, Alcamí M, and Martín F
  • Abstract

    We present a theoretical study of the structure and electronic properties of positively charged C60(q+) and C58(q+) fullerenes (q = 0-14). Electronic energies and optimum geometries have been obtained using density-functional theory with the B3LYP functional for exchange and correlation. We have found that closed- and semiclosed-shell C60(q+) ions (q = 0, 5, and 10) preserve the original icosahedral symmetry of neutral C60. For other charges, significant distortions have been obtained. The C58(q+) fullerenes are, in general, less symmetric, being C58(8+) the closest to the spherical shape. Most C60(q+) fullerenes follow Hund's rule for spin multiplicity, while most C58(q+) fullerenes are more stable with the lowest spin multiplicity. The calculated ionization potentials for both kinds of fullerenes increase almost linearly with charge, except in the vicinity of C60(10+) and C58(8+). We have also explored the region of the potential-energy surface of C60(q+) that leads to asymmetric fission. Minima and transition states corresponding to the last steps of the fission process have been obtained. This has led us to conclude that, for 3 < or = q < or = 8, C2(+) emission is the preferred fragmentation channel, whereas, for higher q values, emission of two charged atomic fragments is more favorable. The corresponding fission barrier vanishes for q > 14.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.