Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Chemokine Programming Dendritic Cell Antigen Response: Part I - Select Chemokine Programming of Antigen Uptake Even After Maturation.

    Immunology. doi: 10.1111/imm.12056. December 26, 2012. View on PubMed.
  • Authors

    Park J, Wu CT, and Bryers JD
  • Abstract

    Here, we report on the successful programming of dendritic cells (DCs) using selectively applied mixtures of chemokines as a novel protocol for engineering vaccine efficiency. Antigen internalization by DCs is a pivotal step in antigen uptake/presentation for bridging innate and adaptive immunity and in exogenous gene delivery used in vaccine strategies. Contrary to most approaches to improve vaccine efficiency, active enhancement of antigen internalization by DCs as a vaccine strategy has been less studied because DCs naturally down-regulate antigen internalization upon maturation. Whereas chemokines are mainly known as signal proteins that induce leucocyte chemotaxis, very little research has been carried out to identify any additional effects of chemokines on DCs following maturation. Here, immature DCs are pre-treated with select chemokines before intentional maturation using lipopolysaccharide (LPS). When pre-treated with a mixture of CCL3 and CCL19 in a 7 3 ratio, then matured with LPS, chemokine pre-treated DCs exhibited 36% higher antigen uptake capacity than immature DCs and 27% higher antigen-processing capacity than immature DCs treated only with LPS. Further, CCL3 CCL19 (7 3) pre-treatment of DCs modulated MHC molecule expression and secretion of various cytokines of DCs. Collectively, DC programming was feasible using a specific chemokine combination and these results provide a novel strategy for enhancing DC-based vaccine efficiency. In Part II, we report on the phenotype changes and antigen presentation capacity of chemokine pre-treated murine bone marrow-derived DCs examined in long-term co-culture with antigen-specific CD4(+) T cells.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.