Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Effect of an orphan response regulator on Streptococcus mutans sucrose-dependent adherence and cariogenesis.

    Infect Immun. 71(8):4351-60. August 2003. View on PubMed.
  • Authors

    Idone V, Brendtro S, Gillespie R, Kocaj S, Peterson E, Rendi M, Warren W, Michalek S, Krastel K, Cvitkovitch D, and Spatafora G
  • Abstract

    Streptococcus mutans is the principal acidogenic component of dental plaque that demineralizes tooth enamel, leading to dental decay. Cell-associated glucosyltransferases catalyze the sucrose-dependent synthesis of sticky glucan polymers that, together with glucan binding proteins, promote S. mutans adherence to teeth and cell aggregation. We generated an S. mutans Tn916 transposon mutant, GMS315, which is defective in sucrose-dependent adherence and significantly less cariogenic than the UA130 wild-type progenitor in germfree rats. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and N-terminal sequence analysis confirmed the absence of a 155-kDa glucosyltransferase S (Gtf-S) from GMS315 protein profiles. Mapping of the unique transposon insertion in GMS315 revealed disruption of a putative regulatory region located upstream of gcrR, a gene previously described by Sato et al. that shares significant amino acid identity with other bacterial response regulators (Y. Sato, Y. Yamamoto, and H. Kizaki, FEMS Microbiol. Lett. 186 187-191, 2000). The gcrR regulator, which we call "tarC," does not align with any of the 13 proposed two-component signal transduction systems derived from in silico analysis of the S. mutans genome, but rather represents one of several orphan response regulators in the genome. The results of Northern hybridization and/or real-time reverse transcription-PCR experiments reveal increased expression of both Gtf-S and glucan binding protein C (GbpC) in a tarC knockout mutant (GMS900), thereby supporting the notion that TarC acts as a negative transcriptional regulator. In addition, we noted that GMS900 has altered biofilm architecture relative to the wild type and is hypocariogenic in germfree rats. Taken collectively, these findings support a role for signal transduction in S. mutans sucrose-dependent adherence and aggregation and implicate TarC as a potential target for controlling S. mutans-induced cariogenesis.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.