Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Implication of alpha4 phosphoprotein and the rapamycin-sensitive mammalian target-of-rapamycin pathway in prolactin receptor signalling.

    J Endocrinol. 173(3):493-506. June 2002. View on PubMed.
  • Authors

    Boudreau RT, Sangster SM, Johnson LM, Dauphinee S, Li AW, and Too CK
  • Abstract

    A prolactin (PRL)-responsive 3'-end cDNA encoding rat alpha4 phosphoprotein was previously isolated from a rat lymphoma cDNA library. Rat alpha4 is a homologue of yeast Tap42 and is a component of the mammalian target-of-rapamycin (mTOR) signalling pathway that stimulates translation initiation and G1 progression in response to nutrients and growth factors. In the present study, the full-length rat alpha4 cDNA was obtained by 5'-RACE and the 1023 bp open reading frame predicted a 340 amino acid protein of 39.1 kDa. The alpha4 mRNA was expressed in quiescent PRL-dependent Nb2 lymphoma cells deprived of PRL for up to 72 h but expression was downregulated within 4 h of PRL treatment. In contrast, PRL-independent Nb2-Sp cells showed constitutive expression of alpha4 that was not affected by PRL. Western analysis of Nb2 cell lysates or of V5-tagged-alpha4 expressed in COS-1 cells detected a single immunoreactive band of approximately 45 kDa. Enzymatic deglycosylation of affinity-purified 45 kDa alpha4 yielded the predicted 39 kDa protein. Phosphorylation of Nb2 alpha4 was induced by PRL or 2-O-tetradecanoyl-phorbol-13-acetate (TPA) and further enhanced by a combination of PRL and TPA. The Nb2 alpha4 associated with the catalytic subunit of protein phosphatase 2A and localized predominantly in Nb2 nuclear fractions with trace amounts in the cytosol. The immunosuppressant drug rapamycin inhibited proliferation of Nb2 cells in response to PRL or interleukin-2, but had no effect on Nb2-Sp cells. Furthermore, transient overexpression of alpha4 in COS-1 cells inhibited PRL stimulation of the immediate-early gene interferon regulatory factor-1 promoter activity. Therefore, PRL downregulation of alpha4 expression and/or PRL-inducible phosphorylation of alpha4 may be necessary for PRL receptor (PRLr) signalling to the interferon regulatory factor-1 promoter in the Nb2 cells and, furthermore, implicates cross-talk between the mTOR and PRLr signalling cascades during Nb2 cell mitogenesis.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.