Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Identification of a novel hemoglobin adduct in Sprague Dawley rats exposed to atrazine.

    Chem Res Toxicol. 19(5):692-700. doi: 10.1021/tx060023c. May 2006. View on PubMed.
  • Authors

    Dooley GP, Prenni JE, Prentiss PL, Cranmer BK, Andersen ME, and Tessari JD
  • Abstract

    Atrazine (2-chloro-4-[ethylamino]-6-[isopropylamino]-1,3,5-triazine) is one of the most commonly used herbicides in North America and is frequently detected in ground and surface waters. This research investigated possible covalent modifications of hemoglobin following in vivo exposures to atrazine in Sprague Dawley (SD) rats and in vitro incubations with diaminochlorotriazine. SD rats were exposed to 0, 10, 30, 100, and 300 (mg atrazine/kg)/day for 3 days via oral gavages, and blood was drawn at 0 h, 24 h, 72 h, 20 days, 1 month, and 2 months for globin analysis. Globin was purified from red blood cells, separated with high-performance liquid chromatography, and analyzed with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). An additional beta globin peak was seen in exposed animals during the HPLC and MALDI-TOF MS analysis with a mass 110 Da greater than the normal beta subunits. Tryptic digests of this beta peak contained a peptide of 1449.9 m/z that corresponded to a modified peptide of amino acids 121-132. Mass spectrometry sequencing of this peptide indicated a 110 Da addition to Cys-125 of the major beta globin chain, which corresponds to a nucleophilic substitution reaction with a diaminochlorotriazine. In vitro incubations of SD globin and diaminochlorotriazine also resulted in a peptide of 1449.6 m/z that was identical in sequence to the modified peptide seen in the in vivo digest, confirming the nucleophilic substitution mechanism of adduct formation. Exposures of SD rats to atrazine results in formation of an adduct that is easily detected and provides an analytical model for detection of triazine adducts in other macromolecules with sulfhydryl functional groups.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.