Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • A high-throughput small-molecule ligand screen targeted to agonists and antagonists of the G-protein-coupled receptor GPR54.

    J Biomol Screen. 15(5):508-17. doi: 10.1177/1087057110369701. June 2010. View on PubMed.
  • Authors

    Kuohung W, Burnett M, Mukhtyar D, Schuman E, Ni J, Crowley WF, Glicksman MA, and Kaiser UB
  • Abstract

    Recent data have shown that the G-protein-coupled receptor GPR54 (also known as KiSS-1 receptor) regulates GnRH release from the hypothalamus. This essential role of GPR54 in controlling the hypothalamic-pituitary-gonadal axis makes it an attractive target for therapeutic intervention in reproductive and cancer medicine. Currently, there are no small-molecule modulators of GPR54 function for experimental or clinical use. To identify small-molecule compounds that modify GPR54 signal transduction, the authors have adapted a cell-based functional assay for high-throughput screening (HTS) using a commercially available homogeneous time-resolved fluorescence assay for inositol phosphate accumulation. They generated stable Chinese hamster ovary cell transfectants that express human GPR54 for use in this assay. After optimization in an automated HTS environment, they screened a library of 110,000 small-molecule compounds using 2 protocols, one to identify agonists and one to identify antagonists. Hits obtained in the primary screen were confirmed to be active in secondary in vitro assays. Compounds identified as agonists or antagonists from HTS and secondary screening will be characterized to identify agents with the potential to be developed as novel orally active agents to treat hormone-dependent disorders such as abnormal puberty, infertility, endometriosis, and sex steroid-dependent tumors.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.