Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Reciprocal regulation of cardiac Na-K-ATPase and Na/Ca exchanger: hypertension, thyroid hormone, development.

    Am J Physiol. 269(3 Pt 1):C675-82. doi: 10.1152/ajpcell.1995.269.3.C675. September 1995. View on PubMed.
  • Authors

    Magyar CE, Wang J, Azuma KK, and McDonough AA
  • Abstract

    Inhibiting cardiac Na pump activity decreases the driving force for the Na/Ca exchanger transport that increases cellular Ca stores and contractility. Decreased abundance of Na pumps would be expected to have the same effect as decreased activity unless there was reciprocal regulation of Na/Ca exchanger expression to oppose the effects of depressed Na pump activity on intracellular Ca stores. The aim of this study was to test the hypothesis that cardiac Na/Ca exchanger abundance is regulated in a reciprocal fashion to Na-K-ATPase abundance in a number of models known to have altered Na-K-ATPase abundance. In renovascular hypertension, cardiac ventricular Na-K-ATPase alpha 1-levels are unaltered, alpha 2-isoform subunit mRNA and protein levels decrease to 0.76 +/- 0.06 and 0.56 +/- 0.07 of control, respectively, and the Na/Ca exchanger protein (not mRNA) increased 1.35 +/- 0.11-fold. In the transition from hypothyroid to hyperthyroid cardiac alpha 1 doubles, alpha 2-protein increases 8.83 +/- 1.06-fold, and the Na/Ca exchanger protein decreases to 0.64 +/- 0.11. A similar pattern was seen during cardiac development in the preweaning rat heart. Treatment with the antiarrhythymic amiodarone has no effect on alpha 1, decreases alpha 2-protein expression to 0.51 +/- 0.08 of control, and increases exchanger expression 1.42 +/- 0.16-fold. In conclusion, the reciprocal regulation of the Na/Ca exchanger and of Na-K-ATPase alpha 2-expression provides evidence for a homeostatic mechanism that would oppose the changes in cellular Ca stores driven by the changes in Na-K-ATPase activity.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.