Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Involvement of the p75(NTR) signaling pathway in persistent synaptic suppression coupled with synapse elimination following repeated long-term depression induction.

    J Neurosci Res. 88(16):3433-46. doi: 10.1002/jnr.22505. December 2010. View on PubMed.
  • Authors

    Pankaj Soni, Egashira Y, Tanaka T, Sakuragi S, Tominaga-Yoshino K, and Ogura A
  • Abstract

    Synaptic plasticity, especially structural plasticity, is thought to be a basis for long-lasting memory. We previously reported that, in rat hippocampus slice cultures, repeated induction of long-term depression (LTD) by application of a metabotropic glutamate receptor (mGluR) agonist led to slowly developing, long-lasting synaptic suppression coupled with synapse elimination. We referred to this phenomenon as LOSS (LTD-repetition-operated synaptic suppression) to discriminate it from conventional single LTD and proposed it as a model for analyzing structural plasticity. Recently, proneurotrophin-activated p75(NTR) signaling has been gaining attention as a possible pathway for the regulation of both neuronal apoptosis and synaptic plasticity. In this study, we examined whether this signaling has a role in the establishment of LOSS. The application of anisomycin indicated that, for LOSS to occur, novel protein synthesis is needed within 6 hr after the induction of mGluR-dependent LTD, which demonstrates that LOSS is an active process and therefore is not due to withering in response to a shortage of trophic factors. Furthermore, we found that pro-BDNF (a species of proneurotrophins) is newly synthesized within 6 hr after the induction of LTD. We therefore exogenously applied a cleavage-resistant form of pro-BDNF, finding synaptic suppression similar to LOSS. LOSS could be abolished by the application of an antibody that binds to and neutralizes p75(NTR) following repeated LTD induction. These results suggest involvement of the p75(NTR) signaling pathway in the long-lasting decremental form of synaptic plasticity.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.