Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • The effects of Photofrin-mediated photodynamic therapy on the modulation of EGFR in esophageal squamous cell carcinoma cells.

    Lasers Med Sci. doi: 10.1007/s10103-012-1119-y. May 15, 2012. View on PubMed.
  • Authors

    Jin-Moo Lee (Washington University School of Medicine), Yang PW, Hung MC, Hsieh CY, Tung EC, Wang YH, and Tsai JC
  • Abstract

    Photodynamic therapy (PDT) has been demonstrated to be an effective minimally invasive treatment modality for early esophageal cancer. However, the molecular action in esophageal cancer during PDT is hardly known. EGFR has been known to downregulate in various cancer cells during PDT. In this study, we investigated the effects of Photofrin-mediated PDT on cell death and expression of EGFR in CE48T/VGH (CE48T) esophageal squamous cell carcinoma cells. We found that the photosensitizer Photofrin in the absence of light exposure can downregulate the expression of EGFR at both transcription and translation levels. Higher concentrations of Photofrin results in cytotoxicity whereas lower doses of Photofrin inhibit EGFR expression under dark control without inducing significant cell death. This Photofrin-associated inhibition of EGFR was repeated in lung cancer, cervical cancer, and glioblastoma cells. Another esophageal squamous cell carcinoma cell line CE81T/VGH (CE81T) was found to be resistant to Photofrin-induced inhibition of EGFR as well as to Photofrin-mediated dark toxicity compared with CE48T. The resistance to the cytotoxicity in CE81T cells became insignificant when the Photofrin-treated cells were further irradiated by red light (Photofrin-PDT). We suggest Photofrin modulates the expression of EGFR in cancer cells. However, efficient cell death still requires the combination of Photofrin and light irradiation in esophageal squamous cell carcinoma cells.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.