Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Effects of varying rates of tallgrass prairie hay and wet corn gluten feed on productivity of lactating dairy cows.

    J Dairy Sci. 95(2):842-9. doi: 10.3168/jds.2011-4752. February 2012. View on PubMed.
  • Authors

    Barry Bradford (Kansas State University), Rezac DJ, Grigsby KN, and Bello NM
  • Abstract

    Productivity of lactating dairy cows fed diets with wet corn gluten feed (WCGF, Sweet Bran, Cargill Inc., Blair, NE) as the primary energy substrate and prairie hay as the primary source of physically effective neutral detergent fiber (peNDF) was assessed relative to a control diet. Forty-eight Holstein cows, 100 to 250 d in milk, were randomly assigned to 1 of 6 pens and pens were randomly assigned to treatment sequence in a replicated 3×3 Latin square. Treatments were a control diet with 18% alfalfa, 18% corn silage, 33% WCGF, and 15% forage NDF (CON); a diet with 20% tallgrass prairie hay, 46% WCGF, and 13% forage NDF (TPH20); and a diet with 14% tallgrass prairie hay, 56% WCGF, and 9% forage NDF (TPH14). Midway through period 2, TPH14 was discontinued due to the high prevalence of diarrhea among cows on that treatment. Data from period 2 for TPH14 pens were discarded, and the pens that had been assigned to TPH14 for period 3 were randomly assigned to the other 2 treatments. Pen-level data were analyzed using linear mixed models, including the random effects of period and pen and the fixed effect of treatment. For animal-level data, additional random effects were introduced to account for subsampling. No evidence for treatment effects was apparent on dry matter intake. Least squares mean milk yields were 36.2, 34.6, and 35.2 kg/d for CON, TPH20, and TPH14, respectively, and were not significantly different. Milk fat concentration was higher for CON and TPH20 than for TPH14, with means of 3.48, 3.41, and 2.82%, respectively. Fat yield was significantly greater for CON compared with TPH20 and TPH14. Milk urea nitrogen was greatest for TPH20 and TPH14 and least for CON, consistent with differences in dietary protein content. Efficiencies, expressed as energy-corrected milk divided by dry matter intake, were 1.47, 1.42, and 1.24 for CON, TPH20, and TPH14, respectively, and were not significantly different. These data indicate that TPH14 did not provide adequate peNDF to support normal rumen function in mid lactation dairy cows; instead, TPH20 may be a feasible diet for use on dairies where high-NDF grass hay and WCGF are available.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.