Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Using free text information to explore how and when GPs code a diagnosis of ovarian cancer: an observational study using primary care records of patients with ovarian cancer.

    BMJ Open. 1(1):e000025. doi: 10.1136/bmjopen-2010-000025. February 23, 2011. View on PubMed.
  • Authors

    Angel Garcia Martin (Regulation of Cell Growth Laboratory), Tate AR, Ali A, and Cassell JA
  • Abstract

    BACKGROUNDPrimary care databases provide a unique resource for healthcare research, but most researchers currently use only the Read codes for their studies, ignoring information in the free text, which is much harder to access.OBJECTIVESTo investigate how much information on ovarian cancer diagnosis is 'hidden' in the free text and the time lag between a diagnosis being described in the text or in a hospital letter and the patient being given a Read code for that diagnosis.DESIGNAnonymised free text records from the General Practice Research Database of 344 women with a Read code indicating ovarian cancer between 1 June 2002 and 31 May 2007 were used to compare the date at which the diagnosis was first coded with the date at which the diagnosis was recorded in the free text. Free text relating to a diagnosis was identified (a) from the date of coded diagnosis and (b) by searching for words relating to the ovary.RESULTS90% of cases had information relating to their ovary in the free text. 45% had text indicating a definite diagnosis of ovarian cancer. 22% had text confirming a diagnosis before the coded date; 10% over 4 weeks previously. Four patients did not have ovarian cancer and 10% had only ambiguous or suspected diagnoses associated with the ovarian cancer code.CONCLUSIONSThere was a vast amount of extra information relating to diagnoses in the free text. Although in most cases text confirmed the coded diagnosis, it also showed that in some cases GPs do not code a definite diagnosis on the date that it is confirmed. For diseases which rely on hospital consultants for diagnosis, free text (particularly letters) is invaluable for accurate dating of diagnosis and referrals and also for identifying misclassified cases.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.