Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Synthesis and biodistribution of oligonucleotide-functionalized, tumor-targetable carbon nanotubes.

    Nano Lett. 8(12):4221-8. doi: 10.1021/nl801878d. December 2008. View on PubMed.
  • Authors

    Diego Rey (GeneWeave Biosciences), Villa CH, McDevitt MR, Escorcia FE, Bergkvist M, Batt CA, and Scheinberg DA
  • Abstract

    Single-wall carbon nanotubes (SWNT) show promise as nanoscale vehicles for targeted therapies. We have functionalized SWNT using regioselective chemistries to confer capabilities of selective targeting using RGD ligands, radiotracing using radiometal chelates, and self-assembly using oligonucleotides. The constructs contained approximately 2-7 phosphorothioate oligonucleotide chains and 50-75 amines per 100 nm length of SWNT, based on a loading of 0.01-0.05 mmol/g and 0.3-0.6 mmol/g, respectively. Dynamic light scattering suggested the functionalized SWNT were well dispersed, without formation of large aggregates in physiologic solutions. The SWNT-oligonucleotide conjugate annealed with a complementary oligonucleotide sequence had a melting temperature of 54 degrees C. Biodistribution in mice was quantified using radiolabeled SWNT-oligonucleotide conjugates. Appended RGD ligands allowed for specific binding to tumor cells in a flow cytometric assay. The techniques employed should enable the synthesis of multifunctional SWNT capable of self-assembly in biological settings.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.