Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • In vivo inosine protects alveolar epithelial type 2 cells against hyperoxia-induced DNA damage through MAP kinase signaling.

    Am J Physiol Lung Cell Mol Physiol. 288(3):L569-75. doi: 10.1152/ajplung.00278.2004. December 3, 2004. View on PubMed.
  • Authors

    Lora Barsky, Lora Barsky (USC Flow Cytometry Core), Buckley S, Weinberg K, and Warburton D
  • Abstract

    Inosine, a naturally occurring purine with anti-inflammatory properties, was assessed as a possible modulator of hyperoxic damage to the pulmonary alveolar epithelium. Rats were treated with inosine, 200 mg/kg ip, twice daily during 48-h exposure to >90% oxygen. The alveolar epithelial type 2 cells (AEC2) were then isolated and cultured. AEC2 isolated from inosine-treated hyperoxic rats had less DNA damage and had increased antioxidant status compared with AEC2 from hyperoxic rats. Inosine treatment during hyperoxia also reduced the proportion of AEC2 in S and G2/M phases of the cell cycle and increased levels of the DNA repair enzyme 8-oxoguanine DNA glycosylase. Bronchoalveolar lavage (BAL) recovered from hyperoxic, inosine-treated rats contained threefold higher levels of active transforming growth factor-beta than BAL from rats exposed to hyperoxia alone, and Smad2 was activated in AEC2 isolated from these animals. ERK1/2 was activated both in freshly isolated and 24-h-cultured AEC2 by in vivo inosine treatment, whereas blockade of the MAPK pathway in vitro reduced the protective effect of in the vivo inosine treatment. Together, the data suggest that inosine treatment during hyperoxic exposure results in protective signaling mediated through pathways downstream of MEK. Thus inosine may deserve further evaluation for its potential to reduce hyperoxic damage to the pulmonary alveolar epithelium.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.