Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • TGF-beta signaling promotes survival and repair in rat alveolar epithelial type 2 cells during recovery after hyperoxic injury.

    Am J Physiol Lung Cell Mol Physiol. 294(4):L739-48. doi: 10.1152/ajplung.00294.2007. April 2008. View on PubMed.
  • Authors

    Lora Barsky, Lora Barsky (USC Flow Cytometry Core), Buckley S, Shi W, and Warburton D
  • Abstract

    Hyperoxic rats treated with inosine during oxygen exposure have increased levels of active transforming growth factor (TGF)-beta in the bronchoalveolar lavage (BAL), yet alveolar epithelial type 2 cells (AEC2) isolated from these animals demonstrate less hyperoxia-induced DNA damage and increased expression of active Smad2. To determine whether TGF-beta1 signaling per se protected AEC2 against hyperoxic damage, freshly isolated AEC2 from hyperoxic rats were incubated with TGF-beta1 for 24 h and assayed for DNA damage by fluorescein-activated cell sorter analysis of TdT-mediated dUTP nick end labeling. TGF-beta1 was protective over a concentration range similar to that in BAL of inosine-treated hyperoxic animals (50-5,000 pg/ml). TGF-beta1 also augmented hyperoxia-induced DNA repair activity and cell migration, stimulated autocrine secretion of fibronectin, accelerated closure of a monolayer scratch wound, and restored hyperoxia-depleted VEGF secretion by AEC2 to normoxic levels. The TGF-beta receptor type I activin-like kinase-4, -5, and -7 inhibitor peptide SB-505124 abolished the protective effect of TGF-beta on hyperoxic DNA damage and increased TdT-mediated dUTP nick end labeling in normoxic cells. These data suggest that endogenous TGF-beta-mediated Smad signaling is required for AEC2 homeostasis in vitro, while exogenous TGF-beta1 treatment of hyperoxia-damaged AEC2 results in a cell that is equipped to survive, repair, migrate, secrete matrix, and induce new blood vessel formation more efficiently than AEC2 primed by hyperoxia alone.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.