Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Identification of novel Smad2 and Smad3 associated proteins in response to TGF-beta1.

    J Cell Biochem. 105(2):596-611. doi: 10.1002/jcb.21860. October 1, 2008. View on PubMed.
  • Authors

    Nahum Meller (Custom DNA Constructs), Brown KA, Ham AJ, Clark CN, Law BK, Chytil A, Cheng N, Pietenpol JA, and Moses HL
  • Abstract

    Transforming growth factor-beta 1 (TGF-beta1) is an important growth inhibitor of epithelial cells and insensitivity to this cytokine results in uncontrolled cell proliferation and can contribute to tumorigenesis. TGF-beta1 signals through the TGF-beta type I and type II receptors, and activates the Smad pathway via phosphorylation of Smad2 and Smad3. Since little is known about the selective activation of Smad2 versus Smad3, we set out to identify novel Smad2 and Smad3 interacting proteins in epithelial cells. A non-transformed human cell line was transduced with Myc-His(6)-Smad2 or Myc-His(6)-Smad3-expressing retrovirus and was treated with TGF-beta1. Myc-His(6)-Smad2 or Myc-His(6)-Smad3 was purified by tandem affinity purification, eluates were subject to SDS-PAGE and Colloidal Blue staining, and select protein bands were digested with trypsin. The resulting tryptic peptides were analyzed by liquid chromatography (LC) and tandem mass spectrometry (MS/MS) and the SEQUEST algorithm was employed to identify proteins in the bands. A number of proteins that are known to interact with Smad2 or Smad3 were detected in the eluates. In addition, a number of putative novel Smad2 and Smad3 associated proteins were identified that have functions in cell proliferation, apoptosis, actin cytoskeleton regulation, cell motility, transcription, and Ras or insulin signaling. Specifically, the interaction between Smad2/3 and the Cdc42 guanine nucleotide exchange factor, Zizimin1, was validated by co-immunoprecipitation. The discovery of these novel Smad2 and/or Smad3 associated proteins may reveal how Smad2 and Smad3 are regulated and/or uncover new functions of Smad2 and Smad3 in TGF-beta1 signaling.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.