Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Second-harmonic generation voltage imaging at subcellular resolution in rat hippocampal slices.

    J Biophotonics. 3(12):784-90. doi: 10.1002/jbio.201000073. September 2, 2010. View on PubMed.
  • Authors

    Alexey Semyanov, Rama S, and Vetrivel L
  • Abstract

    Action potential (AP) is a major signaling mechanism in the neuronal networks. Dendritic AP propagation is important for information processing within the individual neurons. Due to limitations of electrode-based techniques most research on subcellular AP propagation has been restricted to soma and proximal parts of the primary dendrites. Development of voltage-sensitive dyes (VSD) has opened up a possibility to measure voltage changes in the oblique dendrites and the spines. Membrane-bound organic VSD can be used both for fluorescent imaging and imaging of second-harmonic generation (SHG). Both phenomena are voltage dependent and can be used for measuring membrane potential changes. However, changes in SHG are linear to the change in the local membrane potential and its slope is constant across different compartments of cells. Although SHG demonstrates reasonable change with membrane voltage (over 10% per 100 mV), the signal-to-noise (S/N) ratio is currently lower in SHG measurement than in fluorescent methods.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.