Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Induction of DNA double-strand breaks in A549 and normal human pulmonary epithelial cells by cigarette smoke is mediated by free radicals.

    Int J Oncol. 28(6):1491-505. June 2006. View on PubMed.
  • Authors

    Albino AP, Huang X, Jorgensen ED, Gietl D, Traganos F, and Darzynkiewicz Z
  • Abstract

    DNA double-strand breaks (DSBs) are potentially mutagenic/carcinogenic lesions. Induction of DSBs triggers phosphorylation of histone H2AX on Ser-139. Phosphorylated H2AX (gammaH2AX) can be detected immunocytochemically, and the intensity of gammaH2AX immunofluorescence (IF), reflecting the number of gammaH2AX-IF foci per nucleus, reveals the frequency of DSBs. Using multiparameter cytometric analysis of gammaH2AX-IF, we previously observed that DSBs are induced in normal human bronchial epithelial (NHBE) and A549 pulmonary adenocarcinoma cells following exposure to cigarette smoke (CS) or smoke condensate. In the present study, we show that N-acetyl L-cysteine (NAC) and glutathione, both effective scavengers of free radicals, prevented induction of DSBs by CS in these cells. In contrast, the glutathione synthesis inhibitor, DL-Buthionine-[S,R]-sulfoximine (BSO), enhanced the induction of DSBs by CS. The observed reduction of DSBs by NAC correlated with protection of the reproductive capability (clonogenicity) of A549 cells treated with CS. The data implicate formation of free radicals by CS as factors generating DSBs and affecting cell survival. Interestingly, at the conditions of exposure to CS when clonogenicity was only moderately affected, S-phase cells showed significantly higher sensitivity in terms of induction of DSBs compared with G1 or G2M cells. In light of the evidence that CS increases oxidative stress and induces cell proliferation in the lungs of smokers, the high propensity of S-phase cells to develop DSBs upon exposure to CS has to be considered as a potentially pathogenic event in smoke-induced tumor development. This is the first report to reveal cell cycle-phase specificity in both the induction of DSBs by CS and their prevention by free radical scavengers. The detection of gammaH2AX to assess the induction of CS-induced DSBs and their relationship to cell cycle phase provides a convenient tool to explore approaches to protect cells from this type of genotoxic damage.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.