Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Effects of concurrent strength and endurance training on genes related to myostatin signaling pathway and muscle fiber responses.

    J Strength Cond Res. 28(11):3215-23. doi: 10.1519/JSC.0000000000000525. November 2014. View on PubMed.
  • Authors

    de Souza EO, Tricoli V, Aoki MS, Roschel H, Brum PC, Bacurau AV, Silva-Batista C, Wilson JM, Neves M Jr, Soares AG, and Ugrinowitsch C
  • Abstract

    Concurrent training (CT) seems to impair training-induced muscle hypertrophy. This study compared the effects of CT, strength training (ST) and interval training (IT) on the muscle fiber cross-sectional area (CSA) response, and on the expression of selected genes involved in the myostatin (MSTN) signaling mRNA levels. Thirty-seven physically active men were randomly divided into 4 groups CT (n = 11), ST (n = 11), IT (n = 8), and control group (C) (n = 7) and underwent an 8-week training period. Vastus lateralis biopsy muscle samples were obtained at baseline and 48 hours after the last training session. Muscle fiber CSA, selected genes expression, and maximum dynamic ST (1 repetition maximum) were evaluated before and after training. Type IIa and type I muscle fiber CSA increased from pre- to posttest only in the ST group (17.08 and 17.9%, respectively). The SMAD-7 gene expression significantly increased at the posttest in the ST (53.9%) and CT groups (39.3%). The MSTN and its regulatory genes ActIIb, FLST-3, FOXO-3a, and GASP-1 mRNA levels remained unchanged across time and groups. One repetition maximum increased from pre- to posttest in both the ST and CT groups (ST = 18.5%; CT = 17.6%). Our findings are suggestive that MSTN and their regulatory genes at transcript level cannot differentiate muscle fiber CSA responses between CT and ST regimens in humans.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.