Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Inhibition of the AKT pathway in cholangiocarcinoma by MK2206 reduces cellular viability via induction of apoptosis.

    Cancer Cell Int. 15(1):13. doi: 10.1186/s12935-015-0161-9. 2015. View on PubMed.
  • Authors

    Wilson JM, Kunnimalaiyaan S, Kunnimalaiyaan M, and Gamblin TC
  • Abstract

    INTRODUCTIONCholangiocarcinoma (CCA) is an aggressive disease with limited effective treatment options. The PI3K/Akt/mTOR pathway represents an attractive therapeutic target due to its frequent dysregulation in CCA. MK2206, an allosteric Akt inhibitor, has been shown to reduce cellular proliferation in other cancers. We hypothesized that MK2206 mediated inhibition of Akt would impact CCA cellular viability.STUDY METHODSPost treatment with MK2206 (0-2 μM), cellular viability was assessed in two human CCA cell lines-CCLP-1 and SG231-using an MTT assay. Lysates from the MK2206 treated CCA cells were then examined for apoptotic marker expression levels using Western blot analysis. Additionally, the effect on cellular proliferation of MK2206 treatment on survivin depleted cells was determined.RESULTSCCLP-1 and SG231 viability was significantly reduced at MK2206 concentrations of 0.5, 1, and 2 μM by approximately 44%, 53%, and 64% (CCLP-1; p = 0.01) and 32%, 32%, and 42% (SG231; p CONCLUSIONSThis study demonstrates that by blocking phosphorylation of Akt at serine473, CCA cellular growth is reduced. The growth suppression appears to be mediated via apoptosis. Importantly, combination of survivin siRNA transfection and MK2206 treatment significantly decreased cell viability.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.