Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Complete Bordetella avium, Bordetella hinzii and Bordetella trematum lipid A structures and genomic sequence analyses of the loci involved in their modifications.

    Innate Immun. 20(6):659-72. doi: 10.1177/1753425913506950. August 2014. View on PubMed.
  • Authors

    Novikov A, Shah NR, AlBitar-Nehme S, Basheer SM, Trento I, Tirsoaga A, Moksa M, Hirst M, Perry MB, Hamidi AE, Fernandez RC, and Caroff M
  • Abstract

    Endotoxin is recognized as one of the virulence factors of the Bordetella avium bird pathogen, and characterization of its structure and corresponding genomic features are important for an understanding of its role in pathogenicity and for an improved general knowledge of Bordetella spp virulence factors. The structure of the biologically active part of B. avium LPS, lipid A, is described and compared to those of another bird pathogen, opportunistic in humans, Bordetella hinzii, and to that of Bordetella trematum, a human pathogen. Sequence analyses showed that the three strains have homologues of acyl-chain modifying enzymes PagL, PagP and LpxO, of the 1-phosphatase LpxE, in addition to LgmA, LgmB and LgmC, which are required for the glucosamine modification. MALDI mass spectrometry identified a high amount of glucosamine substituting the phosphate groups of B. avium lipid A; this modification was absent from B. hinzii and B. trematum. The acylation patterns of the three lipid As were similar, but they differed from those of Bordetella pertussis and Bordetella parapertussis. They were also found to be close to the lipid A structure of Bordetella bronchiseptica, a mammalian pathogen, only differing from the latter by the degree of hydroxylation of the branched fatty acid.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.