Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Efficient Cre-mediated deletion in cardiac progenitor cells conferred by a 3'UTR-ires-Cre allele of the homeobox gene Nkx2-5.

    Int J Dev Biol. 46(4):431-9. 2002. View on PubMed.
  • Authors

    Stanley EG, Biben C, Elefanty A, Barnett L, Koentgen F, Robb L, and Harvey RP
  • Abstract

    Conditional gene targeting and transgenic strategies utilizing Cre recombinase have been successfully applied to the analysis of development in mouse embryos. To create a conditional system applicable to heart progenitor cells, a Cre recombinase gene linked at its 5' end to an internal ribosome entry site (IRES) was inserted into the 3' untranslated region of the cardiac homeobox gene Nkx2-5 using gene targeting. Nkx2-5IRESCre mice were fully viable as homozygotes. We evaluated the efficacy of Cre-mediated deletion by crossing Nkx2-5IRESCre mice with the Cre-dependent R26R and Z/AP reporter strains. Efficient deletion was observed in the cardiac crescent and heart tube in both strains. However, the Z/AP locus showed transient resistance to deletion in caudal heart progenitors. Such resistance was not evident at the R26R locus, suggesting that Cre-mediated deletion in myocardium may be locus-dependent. From cardiac crescent stages, deletion was seen not only in myocardium, but also endocardium, dorsal mesocardium and pericardial mesoderm. The Cre domain apparently includes cells dorsal to the heart that have been shown to constitute a secondary heart field, contributing myocardium to the outflow tract. Other sites of Nkx2-5 expression, including pharyngeal endoderm and its derivatives, branchial arch epithelium, stomach, spleen, pancreas and liver, also showed efficient deletion. Our data suggest that the Nkx2-5IRESCre strain will be useful for genetic dissection of the multiple tiers of lineage allocation to the forming heart as well as of molecular interactions within the heart fields and heart tube.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.