Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Expression, refolding, and purification of recombinant human phosphodiesterase 3B: definition of the N-terminus of the catalytic core.

    Protein Expr Purif. 35(2):225-36. doi: 10.1016/j.pep.2004.01.009. June 2004. View on PubMed.
  • Authors

    Varnerin JP, Chung CC, Patel SB, Scapin G, Parmee ER, Morin NR, MacNeil DJ, Cully DF, Van der Ploeg LH, and Tota MR
  • Abstract

    We have developed an expression, refolding, and purification protocol for the catalytic domain of human Phosphodiesterase 3B (PDE3B). High level expression in Escherichia coli has been achieved with yields of up to 20mg/L. The catalytic domain of the enzyme was purified by affinity chromatography utilizing a novel affinity ligand. PDE3B, purified by affinity chromatography, with no single impurity #10878;1% as determined by SDS-PAGE, has a specific activity of 2210+/-442nmol/min/mg and a KM for cAMP of 44+/-4.5nM. Reducing the size of the expressed catalytic domain from residues 387-1112 to residues 654-1086 greatly reduced the aggregation phenomena observed with the affinity purified PDE3B. The definition of the N-terminus of the catalytic core was examined through the generation of several truncation mutants spanning amino acid residues 636-674. Constructs starting at E665 and M674 were fully active and devoid of activity, respectively. A construct starting at D668 had a Vmax reduced by approximately 10-fold relative to the longer constructs, yet the KM was not affected. This indicates the minimal N-terminus of the catalytic core lies between E665 and Y667. Refolding and affinity purification of the 654-1073 catalytic core of PDE3B has been employed to produce large quantities of highly pure enzyme for structural studies.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.