Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Immunological characterization and therapeutic activity of an altered-peptide ligand, NBI-6024, based on the immunodominant type 1 diabetes autoantigen insulin B-chain (9-23) peptide.

    Diabetes. 51(7):2126-34. July 2002. View on PubMed.
  • Authors

    Alleva DG, Gaur A, Jin L, Wegmann D, Gottlieb PA, Pahuja A, Johnson EB, Motheral T, Putnam A, Crowe PD, Ling N, Boehme SA, and Conlon PJ
  • Abstract

    The nonobese diabetic (NOD) mouse is a good model for human type 1 diabetes, which is characterized by autoreactive T-cell-mediated destruction of insulin-producing islet beta-cells of the pancreas. The 9-23 amino acid region of the insulin B-chain [B((9-23))] is an immunodominant T-cell target antigen in the NOD mouse that plays a critical role in the disease process. By testing a series of B((9-23)) peptide analogs with single or double alanine substitutions, we identified a set of altered peptide ligands (APLs) capable of inhibiting B((9-23))-induced proliferative responses of NOD pathogenic T-cell clones. These APLs were unable to induce proliferation of these clones. However, vaccinations with the APLs induced strong cellular responses, as measured by in vitro lymphocyte proliferation and Th2 cytokine production (i.e., interleukin [IL]-4 and IL-10, but not gamma-interferon [IFN-gamma]). These responses were cross-reactive with the native antigen, B((9-23)), suggesting that the APL-induced Th2 responses may provide protection by controlling endogenous B((9-23))-specific Th1 (i.e., IFN-gamma-producing) pathogenic responses. One of these APLs that contained alanine substitutions at residues 16 and 19 (16Y-->A, 19C-->A; NBI-6024) was further characterized for its therapeutic activity because it consistently induced T-cell responses (e.g., T-cell lines and clones) that were of the Th2 type and that were cross-reactive with B((9-23)). Subcutaneous injections of NBI-6024 to NOD mice administered either before or after the onset of disease substantially delayed the onset and reduced the incidence of diabetes. This study is the first to report therapeutic activity of an APL derived from an islet beta-cell-specific antigen in type 1 diabetes.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.