Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Cross-linked envelope-related markers for squamous differentiation in human lung cancer cell lines.

    Cancer Res. 50(1):120-8. January 1, 1990. View on PubMed.
  • Authors

    Levitt ML, Gazdar AF, Oie HK, Schuller H, and Thacher SM
  • Abstract

    Lung carcinoma cell lines were analyzed in culture and in nude mouse xenograft for both morphological appearance and expression of specific proteins that participate in cross-linked envelope formation during normal squamous cell terminal differentiation. Cross-linked envelope formation, induced by artificial influx of millimolar Ca2+ into the cultured cells, was an exclusive trait of squamous, adenosquamous, and mucoepidermoid carcinomas. Small cell lung carcinoma and non-squamous non-small cell lung carcinoma lines, such as adenocarcinoma and large cell carcinoma, were uniformly negative for cross-linked envelope formation. Involucrin, which is incorporated into the cross-linked envelope by the enzyme transglutaminase, was expressed at highest levels in squamous tumors, but several of the non-squamous non-small cell lung carcinoma lines also expressed comparable amounts. On the other hand, transglutaminase activity was consistently higher in squamous as opposed to non-squamous lines, so that in cell culture, a clear contrast between the groups could be observed. A Mr 195,000 protein that is incorporated into cultured human epidermal cell cross-linked envelopes was also observed in some but not all of the squamous lines. Two forms of transglutaminase are expressed in cultured keratinocytes. One of them, tissue transglutaminase, was expressed in the majority of squamous cell lines even though it is not a normal product of squamous differentiation in vivo. Keratinocyte transglutaminase, which is distinct from the tissue form and is normally expressed during terminal differentiation in squamous epithelia. was measurably present in only one of the six squamous cell lines tested. In nude mouse xenografts, keratinocyte transglutaminase, localized immunohistochemically with a biotinylated mouse monoclonal antibody, was again present only in a minority of the squamous lines whereas involucrin was expressed in all. In contrast to involucrin, keratinocyte transglutaminase is not an obligatory component of squamous differentiation in the pulmonary carcinoma cell lines tested. Its expression may be of value in further refining their classification.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.