Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Sequence diversity in S1 genes and S1 translation products of 11 serotype 3 reovirus strains.

    J Virol. 64(10):4842-50. October 1990. View on PubMed.
  • Authors

    Dermody TS, Nibert ML, Bassel-Duby R, and Fields BN
  • Abstract

    The S1 gene nucleotide sequences of 10 type 3 (T3) reovirus strains were determined and compared with the T3 prototype Dearing strain in order to study sequence diversity in strains of a single reovirus serotype and to learn more about structure-function relationships of the two S1 translation products, sigma 1 and sigma 1s. Analysis of phylogenetic trees constructed from variation in the sigma 1-encoding S1 nucleotide sequences indicated that there is no pattern of S1 gene relatedness in these strains based on host species, geographic site, or date of isolation. This suggests that reovirus strains are transmitted rapidly between host species and that T3 strains with markedly different S1 sequences circulate simultaneously. Comparison of the deduced sigma 1 amino acid sequences of the 11 T3 strains was notable for the identification of conserved and variable regions of sequence that correlate with the proposed domain organization of sigma 1 (M.L. Nibert, T.S. Dermody, and B. N. Fields, J. Virol. 642976-2989, 1990). Repeat patterns of apolar residues thought to be important for sigma 1 structure were conserved in all strains examined. The deduced sigma 1s amino acid sequences of the strains were more heterogeneous than the sigma 1 sequences; however, a cluster of basic residues near the amino terminus of sigma 1s was conserved. This analysis has allowed us to investigate molecular epidemiology of T3 reovirus strains and to identify conserved and variable sequence motifs in the S1 translation products, sigma 1 or sigma 1s.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.