Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • Crystal structure of a methyltetrahydrofolate- and corrinoid-dependent methyltransferase.

    Structure. 8(8):817-30. August 15, 2000. View on PubMed.
  • Authors

    Doukov T, Seravalli J, Stezowski JJ, and Ragsdale SW
  • Abstract

    BACKGROUNDMethyltetrahydrofolate, corrinoid iron-sulfur protein methyltransferase (MeTr), catalyzes a key step in the Wood-Ljungdahl pathway of carbon dioxide fixation. It transfers the N5-methyl group from methyltetrahydrofolate (CH3-H4folate) to a cob(I)amide center in another protein, the corrinoid iron-sulfur protein. MeTr is a member of a family of proteins that includes methionine synthase and methanogenic enzymes that activate the methyl group of methyltetra-hydromethano(or -sarcino)pterin. We report the first structure of a protein in this family.RESULTSWe determined the crystal structure of MeTr from Clostridium thermoaceticum at 2.2 A resolution using multiwavelength anomalous diffraction methods. The overall architecture presents a new functional class of the versatile triose phosphate isomerase (TIM) barrel fold. The MeTr tertiary structure is surprisingly similar to the crystal structures of dihydropteroate synthetases despite sharing less than 20% sequence identity. This homology permitted the methyl-H4folate binding site to be modeled. The model suggests extensive conservation of the pterin ring binding residues in the polar active sites of the methyltransferases and dihydropteroate synthetases. The most significant structural difference between these enzymes is in a loop structure above the active site. It is quite open in MeTr, where it can be modeled as the cobalamin binding site.CONCLUSIONSThe MeTr structure consists of a TIM barrel that embeds methyl-H4folate and cobamide. All related methyltransferases are predicted to fold into a similar TIM barrel pattern and have a similar pterin and cobamide binding site. The observed structure is consistent with either a 'front' (N5) or 'back' (C8a) side protonation of CH3-H4folate, a key step that enhances the electrophilic character of the methyl group, activating it for nucleophilic attack by Co(I).

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.