Science exchange logo white
  • Solutions
      Buyers

      We are making R&D services readily available to every organization that seeks to make scientific impact. Learn More

      Providers

      We are changing the way providers access and engage customers to streamline the sale and delivery of R&D services. Learn More

      Industries Agriscience Animal Health Basic Research Biopharmaceutical Chemicals Consumer Health Food Science Medical Devices
      Reproducibility

      We believe that good experiments can and should be independently replicated and validated. Learn More

  • Resources
    Innovation Blog
    Customer Stories
    Events
    Industry Trends
    News
    Product Updates
    Help Center
  • About
    About
    Our Story
    Leadership
    Partners
    Join the Team
  • Contact
  • Log In Sign Up
  • Get a Demo
  • A coiled-coil mimetic intercepts BCR-ABL1 dimerization in native and kinase-mutant chronic myeloid leukemia.

    Leukemia. 29(8):1668-75. doi: 10.1038/leu.2015.53. August 2015. View on PubMed.
  • Authors

    Woessner DW, Eiring AM, Bruno BJ, Zabriskie MS, Reynolds KR, Miller GD, O'Hare T, Deininger MW, and Lim CS
  • Abstract

    Targeted therapy of chronic myeloid leukemia (CML) is currently based on small-molecule inhibitors that directly bind the tyrosine kinase domain of BCR-ABL1. This strategy has generally been successful, but is subject to drug resistance because of point mutations in the kinase domain. Kinase activity requires transactivation of BCR-ABL1 following an oligomerization event, which is mediated by the coiled-coil (CC) domain at the N terminus of the protein. Here, we describe a rationally engineered mutant version of the CC domain, called CC(mut3), which interferes with BCR-ABL1 oligomerization and promotes apoptosis in BCR-ABL1-expressing cells, regardless of kinase domain mutation status. CC(mut3) exhibits strong proapoptotic and antiproliferative activity in cell lines expressing native BCR-ABL1, single kinase domain mutant BCR-ABL1 (E255V and T315I) or compound-mutant BCR-ABL1 (E255V/T315I). Moreover, CC(mut3) inhibits colony formation by primary CML CD34(+) cells ex vivo, including a sample expressing the T315I mutant. These data suggest that targeting BCR-ABL1 with CC mutants may provide a novel alternative strategy for treating patients with resistance to current targeted therapies.

Science exchange logo white

  • Facebook
  • Twitter
  • LinkedIn

Solutions

  • Buyers
  • Providers
  • Reproducibility

Industries

  • Agriscience
  • Animal Health
  • Basic Research
  • Biopharmaceutical
  • Chemicals
  • Consumer Health
  • Food Science
  • Medical Devices

Resources

  • Innovation Blog
  • Customer Stories
  • Events
  • Industry Trends
  • News
  • Product Updates

About

  • Our Story
  • Leadership
  • Partners
  • Join the Team

Support

  • Contact Us
  • Help Center
  • Trust
  • Terms of Use
  • Privacy Policy

Copyright © 2021 Science Exchange, Inc. All rights reserved.